Search results for "Finite element models"
showing 6 items of 6 documents
A new design problem in the formulation of a special moment resisting connection device for preventing local buckling
2021
In the present paper an improved formulation devoted to the optimal design problem of a special moment resisting connection device for steel frames is proposed. This innovative device is called a Limited Resistance Plastic Device (LRPD) and it has been recently proposed and patented by some of the authors. It is thought to be preferably located at the extremes of the beam, connecting the beam end cross section with the relevant column. The typical device is a steel element characterized by symmetry with respect to three orthogonal barycentric planes and constituted by a sequence of three portions with abrupt cross section changes. The main novelty of the present proposal is related to the d…
Innovative connections for steel-concrete-trussed beams: a patented solution
2023
The most recent design strategies welcome the adoption of innovative techniques for seismic energy input mitigation, aiming to achieve high dissipation capacity, prevent the structure from collapse and ensure the serviceability of the construction. Friction damper devices have been widely adopted in framed steel structures for decades, while their introduction in different structural types is still under investigation. This paper presents the outcomes of innovative research supported by the industry and conducted on beam-to-column connections of RC structures in which the beams are Hybrid Steel-Trussed Concrete Beams (HSTCBs) and the columns are classical RC pillars. An innovative solution,…
Shear models of Rc-encased steel joist beams in MRFs
2019
This study presents the application of different analytical and finite element (FE) models aimed at predicting the shear resistance of reinforced concrete (RC) and reinforced concrete-encased steel joist (HRCESJ) beams with inclined transversal reinforcement in moment resisting frames (MRFs). In particular, four analytical models are taken into account, two of them specifically conceived for HRCESJ beams in seismic area. The analytical models considered are Eurocode-2 model for the shear strength of RC beams; a variable-inclination stress-field approach; a strut-and-tie additive model and, finally, an analytical formulation in which the shear capacity depends on the number of pairs of incli…
Design of friction connections in R.C. structures with hybrid steel-trussed concrete beams
2019
In this work a feasibility study on the use of friction devices within beam-to-column joints of RC structures is conducted. The connection is made between RC columns cast in-situ and semi-prefabricated steel-concrete beams, named Hybrid Steel-Trussed-Concrete Beams (HSTCBs). Nowadays, HSTCBs are widely adopted in civil and industrial buildings and, therefore, it is required to evaluate their compliance with the capacity design criteria and their seismic energy dissipation capability. However, the design of the reinforcement of such beams usually lead to the adoption of large amount of steel within the panel zone which becomes potentially vulnerable to the effects of seismic cyclic actions a…
Design of RC joints equipped with hybrid trussed beams and friction dampers
2021
Abstract The challenge of this research consists in the first attempt to apply a dissipative friction connection to beam-to-column joints with semi-prefabricated Hybrid Steel-Trussed Concrete Beams (HSTCB) and RC pillars cast in-situ. Nowadays, HSTCBs are widely adopted in civil and industrial buildings and, therefore, it is required to evaluate their compliance with the capacity design criteria and their seismic energy dissipation capability. However, the design of the reinforcement of such beams usually lead to the adoption of large amount of steel within the panel zone which becomes potentially vulnerable to the effects of seismic cyclic actions and dramatically reduce the dissipation ca…
Numerical analysis of the effects of PBO-FRCM confinement on RC columns
2018
This paper presents a finite element (FE) analysis on the behavior of reinforced concrete (RC) squared and rectangular columns strengthened by PBO-FRCM, under axial force and bending moment. The modeling technique adopted for the compressive behavior of confined concrete is previously validated developing FE models for specimens of plain concrete wrapped by PBO-FRCM and comparing the numerical results with those obtained by experimental tests on squared and rectangular confined columns. Then, the model of the RC element is developed reproducing the load condition of columns in a MRF loaded by horizontal forces with constant axial load applied to the pillar during the analysis. The numerical…